Lecture 17

Physics 404

We go back to the problem of an ideal gas. Consider the solutions to the Schrodinger equation
for a single particle in a box, as we did before (Lecture 8). We call these solutions ‘orbitals’. An orbital is
labeled by a complete list of quantum numbers “s”. (For example it could be = (ny, ny, n, S, mg),
where n,, n,, n, are positive integers, S is the spin quantum number and ms is the z-component of spin
guantum number.) There are an infinite number of such solutions. We make the leap and assume that
if there are N identical particles in the box, and they do not interact, we can describe the system as
being occupied by N particles occupying N single-particle orbitals. This is a big assumption that will be
revisited later. (Note that the “box” that we consider need not be a cube — it could be a piece of metal,
a nucleus, a white dwarf, a neutron star, etc.)
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The spin-statistics theorem of quantum mechanics states that there are two types of elementary
particles: Fermions (of half-integer spin) and Bosons (of integer spin). A list of elementary particles and
their spins is posted on the class web site.

If many identical Fermions are placed in a box and there is strong overlap of the wavefunctions,
the Pauli exclusion principle says that no two of these Fermions can occupy the same exact quantum
state. This places a strong constraint on the Gibbs sum for the Fermion case. These considerations do
not apply to many identical Boson systems. In the Fermion case, a particular orbital can either be un-
occupied or occupied by exactly 1 particle. In the Boson case, any number of particles can occupy a
particular orbital, including 0.

First we will calculate the Gibbs sum for the Fermion case. We consider the system to be a
single orbital, arbitrarily chosen from the infinite number of single-particle orbitals available to a particle
in a box. The reservoir is the set of all other orbitals. We assume that the system and reservoir are in
both thermal and diffusive equilibrium. The Gibbs sum is
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convention that the zero particle state is the zero of energy g55) = 0. The single particle state has an

energy we call g5(;) = €. The Gibbs sum becomes Z =1 + e=8)/T = 1 4 2e78/T where 1 = e/ s the

activity. The thermal average occupancy of the state can be calculated simply as (N) = 0 X m +
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known as the Fermi-Dirac distribution. We will make a further leap by saying that this distribution
applies for any orbital of any energy &, because the original choice of orbital was arbitrary. At zero
temperature this distribution is f(e) = 1,fore —u < 0, and f(¢) = 0, for e — p > 0. In other words all
the states of energy below p are filled, and all states above L are empty. The filled states are sometimes
called the ‘Fermi sea’. At finite temperature, the discontinuous distribution softens with f(e = p) =
1/2 (see the applet). Only Fermions within energies a few T below p will be ‘promoted’ to the un-

occupied higher energy states above u.
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Next we derive the Gibbs sum for the Boson case. Once again we consider the system to be a
single orbital, arbitrarily chosen from the infinite number of single-particle orbitals available to a particle
in a box. The reservoir is the set of all other orbitals. We assume that the system and reservoir are in
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http://www.physics.umd.edu/courses/Phys404/Anlage_Spring11/Elementary%20Particles%20Bosons%20Fermions.pdf
http://www.benfold.com/sse/fd.html

both thermal and diffusive equilibrium. The Gibbs sum is Z = Y\\- ng(N) eNI=29)/T  3nd any

number of particles can go into the orbital, hence the first sum could go up to Ny, the total number of
particles in the System+Reservoir. For a large system+reservoir, N, is effectively infinite. The orbital has
a single-particle energy of €, and we assume that when it is occupied by N particles the energy of the

system is simply e5oyy = Ne. The Gibbs sum now becomes Z = ¥, e(Nu-Ng)/T Zﬁ};o(}\e‘s/T)N. If

we assume that Ae ¥/ < 1, then this sum will converge to Z = ﬁ We can evaluate the thermal
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average occupation number as (N) = 7\%, which gives f(e) = (N) = L = L which is
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known as the Bose-Einstein distribution. Note that it differs from the Fermi-Dirac distribution only in
the minus sign in the denominator!

Taking the logarithm of both sides of the convergence condition Ae"¥/T < 1 for Bosons results in
the constraint % > 0, which says that the chemical potential is bounded above by the lowest energy

orbital in the system.

Note that in the limit ST;“» 1, both distributions go to the same functional form, f(¢) =

e~ (E=W/T \which is the classical limit f(e) « 1, which is equivalent to the dilute limit nl < 1.
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