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Lecture 17 

Physics 404 

 

 We go back to the problem of an ideal gas.  Consider the solutions to the Schrodinger equation 
for a single particle in a box, as we did before (Lecture 8).  We call these solutions ‘orbitals’.  An orbital is 
labeled by a complete list of quantum numbers “s”.  (For example it could be “s” = (nx, ny, nz, S, mS), 
where nx, ny, nz are positive integers, S is the spin quantum number and mS is the z-component of spin 
quantum number.)  There are an infinite number of such solutions.  We make the leap and assume that 
if there are N identical particles in the box, and they do not interact, we can describe the system as 
being occupied by N particles occupying N single-particle orbitals.  This is a big assumption that will be 
revisited later.  (Note that the “box” that we consider need not be a cube – it could be a piece of metal, 
a nucleus, a white dwarf, a neutron star, etc.) 

 The spin-statistics theorem of quantum mechanics states that there are two types of elementary 
particles: Fermions (of half-integer spin) and Bosons (of integer spin).  A list of elementary particles and 
their spins is posted on the class web site. 

If many identical Fermions are placed in a box and there is strong overlap of the wavefunctions, 
the Pauli exclusion principle says that no two of these Fermions can occupy the same exact quantum 
state.  This places a strong constraint on the Gibbs sum for the Fermion case.  These considerations do 
not apply to many identical Boson systems.  In the Fermion case, a particular orbital can either be un-
occupied or occupied by exactly 1 particle.  In the Boson case, any number of particles can occupy a 
particular orbital, including 0. 

First we will calculate the Gibbs sum for the Fermion case.  We consider the system to be a 
single orbital, arbitrarily chosen from the infinite number of single-particle orbitals available to a particle 
in a box.  The reservoir is the set of all other orbitals.  We assume that the system and reservoir are in 
both thermal and diffusive equilibrium.  The Gibbs sum is 

                 
     

   
                    

                            .  We adopt the 

convention that the zero particle state is the zero of energy        .  The single particle state has an 

energy we call        .  The Gibbs sum becomes                      , where        is the 

activity.  The thermal average occupancy of the state can be calculated simply as       
 

           

  
      

           
      

          .  Dividing top and bottom by        gives          
 

          
, which is 

known as the Fermi-Dirac distribution.  We will make a further leap by saying that this distribution 
applies for any orbital of any energy  , because the original choice of orbital was arbitrary.  At zero 
temperature this distribution is       , for      , and       , for      .  In other words all 
the states of energy below   are filled, and all states above   are empty.  The filled states are sometimes 
called the ‘Fermi sea’.  At finite temperature, the discontinuous distribution softens with        
    (see the applet).  Only Fermions within energies a few   below   will be ‘promoted’ to the un-
occupied higher energy states above  . 

Next we derive the Gibbs sum for the Boson case.  Once again we consider the system to be a 
single orbital, arbitrarily chosen from the infinite number of single-particle orbitals available to a particle 
in a box.  The reservoir is the set of all other orbitals.  We assume that the system and reservoir are in 

http://www.physics.umd.edu/courses/Phys404/Anlage_Spring11/Elementary%20Particles%20Bosons%20Fermions.pdf
http://www.benfold.com/sse/fd.html
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both thermal and diffusive equilibrium.  The Gibbs sum is                  
     

, and any 

number of particles can go into the orbital, hence the first sum could go up to   , the total number of 
particles in the System+Reservoir.  For a large system+reservoir,    is effectively infinite.  The orbital has 
a single-particle energy of  , and we assume that when it is occupied by   particles the energy of the 

system is simply         .  The Gibbs sum now becomes               
             

  
   .  If 

we assume that         , then this sum will converge to   
 

        .  We can evaluate the thermal 

average occupation number as      
     

  
, which gives          

 
 

 
      

 
 

          
, which is 

known as the Bose-Einstein distribution.  Note that it differs from the Fermi-Dirac distribution only in 
the minus sign in the denominator! 

Taking the logarithm of both sides of the convergence condition          for Bosons results in 

the constraint 
   

 
  , which says that the chemical potential is bounded above by the lowest energy 

orbital in the system.   

Note that in the limit 
   

 
  , both distributions go to the same functional form,      

         , which is the classical limit       , which is equivalent to the dilute limit 
 

  
  . 

 

 


